CHROM. 6835

Note

Paper chromatography of ¹¹³^mIn-labelled radiopharmaceuticals: [¹¹³^m In]DTPA

D. K. JAISWAL, JAGDISH CHANDER, ASHA MALIK AND BIKRAM SINGH Institute of Nuclear Medicine and Allied Sciences, Probyn Road, Delhi-7 (India) (Received May 25th, 1973)

The rapid growth of the use of short-lived radiopharmaceuticals in nuclear medicine is associated with the development of analytical techniques, such as chromatography, that can be used to identify various components in these products. Radiopharmaceuticals incorporating ^{113m}In ($T_{\pm} = 100$ min) are being widely used in organ scanning. The paper chromatography of ^{113m}In-labelled radiopharmaceuticals for brain, placenta, liver and spleen scanning is described in this paper.

METHODS AND MATERIALS

A 25 mCi ^{113m}In generator obtained from the Radiochemical Centre, Amersham, Great Britain, was used for the preparation of ^{113m}In-labelled radiopharmaceuticals. ^{113m}In was eluted as indium chloride with 6 ml of 0.04 N HCl. The following preparations were made according to published methods:

(i) 113m In-gelatin complex for placental scanning¹.

(*ii*) [^{113m}In] indium hydroxide colloid for liver and spleen scanning².

(*iii*) $[^{113m}$ In]DTPA chelate for brain scanning³. This was also prepared from a brain scanning kit (Code No. 80) supplied with the indium generator. The preparation was carried out by injecting 5 ml of generator eluate into a vial containing component A (a sterile aqueous solution of DTPA and acetic acid) followed by the injection of 1.0 ml of component B (a sterile aqueous buffer containing 31.7 mg of trometamol).

The preparations were chromatographed on Whatman No. 1 paper using the ascending technique in the following solvents: 0.1 N HCl; 0.1 N NH₄OH; 0.1 N NH₄OAc; 3% NaCl; and 85% methanol. The chromatograms were cut into 1×2 cm strips and counted in a Nuclear-Chicago automatic well counting system, Model 4219 (Nuclear-Chicago, Des Plaines, III., U.S.A.).

RESULTS AND DISCUSSION

For the chromatography of short-lived radiopharmaceuticals, it is desirable to use solvent systems that have rapid flow-rates. In general, mixtures of organic solvents provide good separations but have the disadvantage of slow runs. Aqueous solvents, which are usually fast, appear to be suitable for ^{113m} In-labelled radiopharmaceuticals. The R_F values of various r^{13m} In-labelled preparations in different solvents are shown in Table I.

TABLE I

R_F VALUES OF ¹¹³min-LABELLED RADIOPHARMACEUTICALS

Solvent	Time (h)	Solvent front (cm)	R_F^*			
			Indium chloride	Indium– gelatin complex	Indium hydroxide colloid	Indium- DTPA**
0.1 N HCI	1	19-21	0.92	0.90	0.75 (T)	0.93
0.1 N NHOH	1	19-20	0.03	0.03 (T)	0.03	0.31 (T)
0.1 N NH4OAc	1	19-20	0.03	0.03	0.03	0.95
3% NaCl	1	18-19	0.03 (T)	0.03	0.03	0.95
85% Methanol	1.5	16-17	0.06	0.03	0.03	0.44

* T = tailing.

** Prepared according to Hill et al.3.

It can be seen from Table 1 that the R_F values for indium chloride, the indiumgelatin complex and indium hydroxide colloid preparations are very similar. The [^{113m}In] indium hydroxide colloid also shows an unidentified peak (<3%) along the solvent front in 3% NaCl.

[^{113m}In]DTPA is well separated in 0.1 N NH₄OAc, 3% NaCl and 85% methanol. [^{113m}In]DTPA as prepared from the brain scanning kit and by the procedure of Hill *et al.*³ showed similar chromatographic behaviour. A few preparations showed another small peak (<4%) in 85% methanol, which probably corresponds to indium hydroxide³. It can be concluded that the above solvent systems are suitable for determining the radiochemical purity of [^{113m}In]DTPA preparations.

ACKNOWLEDGEMENTS

We are grateful to Col. S. K. Mazumdar and Dr. K. P. Chakraborty for their interest in this work.

REFERENCES

- 1 J. E. Huddlestun, F. S. Mishkin, J. E. Carter, P. D. Dubois and I. C. Reese, *Radiology*, 92 (1969) 587.
- 2 J. Sewatkar, M. C. Patel, S. M. Sharma, R. D. Ganatra and J. L. Quinn, Int. J. Appl. Radiat. Isotop., 21 (1970) 36.
- 3 J. Hill, M. J. Welch, M. Adatepe and E. Pochen, J. Nucl. Med., 11 (1970) 28.